CH₂OH **Macromolecules** 0 Η н н OH ÔН HÖ You are what you eat! ÔH **AP Biology**

Carbohydrates

- Structure / monomer
 - monosaccharide
- Function
 - energy
 - raw materials
 - energy storage

- Examples
 - glucose, starch, cellulose, glycogen

glycosidic bond

Sugars

- Most names for sugars end in <u>-ose</u>
- Classified by number of carbons
 - ♦ 6C = hexose (glucose)
 - ♦ 5C = pentose (ribose)
 - ♦ 3C = triose (glyceraldehyde)

AP Biology Glucose

Ribose

Glyceraldehyde

Simple & complex sugars

- Monosaccharides
 - ♦ simple 1 monomer sugars
 - ◆ glucose
- Disaccharides
 - ◆ <u>2 monomers</u>
 - ◆ <u>sucrose</u>
- Polysaccharides
 - ◆ large polymers
 - ♦ starch

Glucose

Polysaccharides

- Polymers of sugars
 - costs little energy to build
 - easily reversible = release energy
- Function:
 - energy storage
 - starch (plants)
 - glycogen (animals)
 - in liver & muscles

structure

- cellulose (plants)
- chitin (arthropods & fungi)

Linear vs. branched polysaccharides

Polysaccharide diversity

Molecular structure determines function

isomers of glucose structure determines function...

Cellulose

Most abundant organic compound on Earth

- herbivores have evolved a mechanism to digest cellulose
- ♦ most carnivores have not
 - that's why they eat meat to get their energy & nutrients
 - cellulose = undigestible roughage

But it tastes like hay! Who can live on this stuff?! Cell walls

Cellulose – molecules

Cellulose microfibrils in plant cell wall

β Glucose monomer

OH

Microfibril

0.5 um

Plant cells

Helpful bacteria

- How can herbivores digest cellulose so well?
 - <u>BACTERIA</u> live in their digestive systems & help digest cellulose-rich (grass) meals

Proteins

- Most structurally & functionally diverse group
- Function: involved in almost everything
 - <u>enzymes</u> (pepsin, DNA polymerase)
 - structure (keratin, collagen)
 - <u>carriers & transport</u> (hemoglobin, aquaporin)
 - <u>cell communication</u>
 - signals (insulin & other hormones)
 - receptors
 - defense (antibodies)
 - movement (actin & myosin)
 - storage (bean seed proteins)

Regents Biology

Proteins

Structure

- monomer = <u>amino acids</u>
 - 20 different amino acids
- polymer = polypeptide

hormon

- protein can be one or more polypeptide chains folded & bonded together
- Iarge & complex molecules
 - complex 3-D shape

hemoglobin

Rubisco

Amino acids

- Structure
 - central carbon
 - amino group
 - carboxyl group (acid)
 - R group (side chain)
 - variable group
 - different for each amino acid
 - confers unique chemical properties to each amino acid
 - like 20 different letters of an alphabet

Regents Biology* can make many words (proteins)

Oh, I get it! amino = NH2 acid = COOH

R

Sulfur containing amino acids

Form <u>disulfide bridges</u>

- covalent cross links betweens sulfhydryls
- stabilizes 3-D structure

Building proteins

Peptide bonds

Amino acid 2

Amino acid 1

N-terminus

Peptide bond

 covalent bond between NH₂ (amine) of one amino acid & COOH (carboxyl) of another

Building proteins

- Polypeptide chains have direction
 - ♦ <u>N-terminus</u> = NH₂ end
 - C-terminus = COOH end
 - repeated sequence (N-C-C) is the polypeptide backbone
 - can only grow in one direction

Protein structure & function

Function depends on structure

- ♦ 3-D structure
 - twisted, folded, coiled into unique shape

hemoglobin

Regents Biology

Protein structure

Reg

(d) Quaternary structure

Protein denaturation

- Unfolding a protein
 - <u>conditions that disrupt H bonds, ionic</u>
 <u>bonds, disulfide bridges</u>
 Folded protein
 - temperature
 - <u>pH</u>
 - salinity
 - ◆ alter 2° & 3° structure
 - alter 3-D shape
 - destroys functionality
 - some proteins can return to their functional shape

In Biology,

size doesn't matter,

SHAPE matters!

after denaturation, many cannot Regents Biology

Nucleic Acids

- Examples:
 - RNA (ribonucleic acid)
 single helix
 - DNA (deoxyribonucleic acid)
 double helix

DNA

- Structure:
 - monomers = <u>nucleotides</u>

Lipids

- Lipids are composed of C, H, O
 - long hydrocarbon chains (H-C)
- "Family groups"
 - fats
 - phospholipids
 - steroids
- Do not form polymers
 - big molecules made of smaller subunits
 - <u>not</u> a continuing chain

Regents Biology

Fats

Structure:

• glycerol (3C alcohol) + fatty acid

fatty acid = long HC "tail" with carboxyl (COOH) group "head"

Fats store energy

Why do humans like fatty foods?

- Long HC chain
 - polar or non-polar?
 - hydrophilic of hydrophobic?
- Function:
 - energy storage
 - concentrated
 - * all H-C!
 - 2x carbohydrates
 - <u>cushion organs</u>
 - insulates body

Regents Biology think whale blubber!

Saturated fats

- All C bonded to H
- No C=C double bonds
 - Iong, straight chain
 - most animal fats
 - solid at room temp.
 - contributes to cardiovascular disease (atherosclerosis)
 = plaque deposits

Regents Biology

Unsaturated fats

- C=C double bonds in the fatty acids
 - plant & fish fats
 - vegetable oils
 - <u>liquid at room temperature</u>
 - the kinks made by double bonded C prevent the molecules from packing tightly together

Phospholipids

Structure:

logy

- ◆ glycerol + 2 fatty acids + PO₄
 - PO₄ = negatively charged

It's just like a penguin... A head at one end & a tail at the other!

Phospholipids in water

- Hydrophilic heads "attracted" to H₂O
- Hydrophobic tails "hide" from H₂O
 - can self-assemble into "bubbles"
 - bubble = "micelle"
 - can also form a phospholipid bilayer
 - early evolutionary stage of cell?

Steroids

Structure:

- ♦ 4 fused C rings + ??
 - different steroids created by attaching different <u>functional groups</u> to rings
 - different structure creates different function
- examples: cholesterol, sex hormones

Cholesterol

- Important cell component
 - animal cell membranes
 - precursor of all other steroids
 - including vertebrate sex hormones
 - high levels in blood may contribute to cardiovascular disease

From Cholesterol → Sex Hormones What a big difference a few atoms can make!

