EXCEPTIONS TO MENDEL'S LAWS

All genes are not determined by only two alleles- one dominant and one recessive. There are some exceptions to Mendel's Laws.

Today 3/23

- Turn in practice problems
- Get ready for a quiz to check your understanding of these punnett squares!

Think of it like mixing paint...

1. INCOMPLETE DOMINANCE

- Neither allele is completely dominant
- Both alleles combine equally to give a new trait.
- Called hybrids

PRACTICE TIME

In the box in your notes:

Cross a Red flower (RR) with a white flower (R'R')

The traits don't mix any better than a bunch of marbles...

2. CODOMINANCE

- Both alleles are expressed
- Always use the dominant form of each allele

Red cow (RR)

White cow (WW)

RR R R W RW RW W RW RW W RW RW

Roan cow (RW)

PRACTICE TIME

In the box in your notes:

Cross a black chicken (BB) with a black and white chicken (BW)

3. MULTIPLE ALLELES:

more than two alleles control a phenotype

• Ex: blood type

<u>Genotypes</u>: AO- 2/4 or 50% OO- 2/4 or 50%

<u>Phenotypes</u>: Type A- 2/4 or 50% Type O- 2/4 or 50%

Blood type inheritance

- Blood type = presence or absence of proteins on red blood cells
- Usually have to do more than one punnett square to determine possibilities for kids.

<u>Phenotypes</u>	<u>Genotypes</u>
Blood types	Alleles for
	blood type
А	AA or AO
В	BB or BO
AB	Only AB
Ο	Only OO

PRACTICE TIME

In the box in your notes:

Cross a parent with type AB blood with a parent with type A blood (2 punnetts)

Blood Type	Genotype		Can Receive Blood From:	
A	i [^] i i [^] i	АА АО	A or O	
В	i ^B i i ^B i ^B	BB BO	B or O	
AB	i [^] i	AB	А, В, АВ, О	
Ο	ii	00	Ο	

	Caucasians	African- American	Hispanic	Asian
0+	37%	47%	53%	39%
0-	8%	4%	4%	1%
A+	33%	24%	29%	27%
Α-	7%	2%	2%	0.5%
B +	9%	18%	9%	25%
В-	2%	1%	1%	0.4%
AB +	3%	4%	2%	7%
AB -	1%	0.3%	0.2%	0.1%

Another example... Labrador Retrievers!

- Labrador Retriever coat color
 - Determined by 1 gene with 4 alleles.
 - Even if more than 2 alleles exist in a population, any given individual can only have 2 of them
 - (1 from mother, 1 from father)

Lab Coat is controlled by MULTIPLE ALLELES (B, b, E, and e)

- Black is dominant to chocolate
 - B: black

- b: chocolate

- Yellow is recessive epistatic (when present, it blocks the expression of the black and chocolate alleles)
 - Yellow: E or e
 - * must be ee to produce a yellow lab

CHOCOLATE

4. SEX-LINKED TRAITS: controlled by genes located on

sex chromosomes

- Usually carried on X chromosome
- Since females are XX, they are usually carriers of the trait
- Since males are XY, they have one big & one small, stumpy chromosome.
 - The small chromosome (y) does not carry an allele so whatever allele is on the X (donated by mom) is what the boy will have.
 - He is either completely dominant or completely recessive
 - Boys cannot be a carriers of a sex linked trait.

- Males can pass it to all of their daughters, none to sons
- Females have 50/50 chance of passing it to all of their children
- Ex:
 - Hemophilia- can't clot blood
 - Colorblindness- can't see certain colors.

Heterochromia- uneven distribution of pigment resulting from disease or injury

- 5. Polygenic inheritance-2 or more genes affect the phenotype.
- Ex: height, weight, skin color, eye color

What is a pedigree?

- Pedigrees: graphic representation of family tree
- May be used if testcross cannot be made
- Pedigree key:
 - 📕 = male
 - = female
 - **marriage** = marriage
 - Children = connected to marriage by vertical life
 - = recessive male/female (bb)
 - _____ = heterozygous ½ shaded, ½ unshaded

Pedigree for Case 1 Π IV V + stillbirth () female male

Make a little one using this fam...

