EXCEPTIONS TO MENDEL’S LAWS

All genes are not determined by only two alleles- one dominant and one recessive. There are some exceptions to Mendel's Laws.

Today 3/23

- Turn in practice problems
- Get ready for a quiz to check your understanding of these punnett squares!

Think of it like mixing paint...

1. INCOMPLETE DOMINANCE

- Neither allele is completely dominant
- Both alleles combine equally to give a new trait.
- Called hybrids

PRACTICE TIME

In the box in your notes:

Cross a Red flower (RR) with a white flower ($R^{\prime} R^{\prime}$)

The traits don't mix any better than a bunch of marbles...

2. CODOMINANCE

- Both alleles are expressed
- Always use the dominant form of each allele

PRACTICE TIME

In the box in your notes:

Cross a black chicken (BB) with a black and white chicken (BW)

3. MULTIPLE ALLELES:

more than two alleles control a phenotype

- Ex: blood type

	0	0	Genotypes: AO- $2 / 4$ or 50%
A	AO	AO	
0	00	00	Type A- 2/4 or 50\%

Blood type inheritance

- Blood type = presence or absence of proteins on red blood cells
- Usually have to do more than one punnett square to determine possibilities for kids.

Phenotypes Blood types	Genotypes Alleles for blood type
A	AA or AO
B	BB or BO
AB	Only AB
O	Only OO

PRACTICE TIME

In the box in your notes:

Cross a parent with type AB blood with a parent with type A blood (2 punnetts)

Blood Type	Genotype		Can Receive Blood From:
A	$i_{i}{ }_{i}$ $i^{\text {A }} i^{\mathrm{A}}$	AA AO	A or O
B	$i^{\mathrm{B}} \mathrm{i}^{\text {a }}$ $i^{\mathrm{B}}{ }^{\mathrm{B}}$	BB Bо	B or O
AB	$i^{\text {A }}{ }^{\text {B }}$	AB	$\begin{aligned} & A, B, \\ & A B, O \end{aligned}$
O	ii	-	O

Caucasians
African-
Hispanic
American

O +	37%	47%	53%	39%
O -	8%	4%	4%	1%
A +	33%	24%	29%	27%
A -	7%	2%	2%	0.5%
B +	9%	18%	9%	25%
B -	2%	1%	1%	0.4%
AB +	3%	4%	2%	7%
AB -	1%	0.3%	0.2%	0.1%

Another example... Labrador Retrievers!

- Labrador Retriever coat color
- Determined by 1 gene with 4 alleles.
- Even if more than 2 alleles exist in a population, any given individual can only have 2 of them
- (1 from mother, 1 from father)

Lab Coat is controlled by MULTIPLE ALLELES (B, b, E, and e)

- Black is dominant to chocolate
- B: black
- b: chocolate
- Yellow is recessive epistatic (when present, it blocks the expression of the black and chocolate alleles)
- Yellow: E or e
- * must be ee to produce a yellow lab

4. SEX-LINKED TRAITS: controlled by genes located on sex chromosomes

- Usually carried on X chromosome
- Since females are XX, they are usually carriers of the trait
- Since males are XY, they have one big \& one small, stumpy chromosome.
- The small chromosome (y) does not carry an allele so whatever allele is on the X (donated by mom) is what the boy will have.
- He is either completely dominant or completely recessive
- Boys cannot be a carriers of a sex linked trait.

$\left\|\|^{\prime}\right.$

- Males can pass it to all of their daughters, none to sons
- Females have $50 / 50$ chance of passing it to all of their children
- Ex:
- Hemophilia- can't clot blood
- Colorblindness- can' t see certain colors.

Heterochromia- uneven
distribution of pigment resulting from disease or injury

5. Polygenic inheritance-2 or more genes affect the phenotype.

- Ex: height, weight, skin color, eye color

Phenotypes:	$1 / 64$	$6 / 64$	$15 / 64$	$20 / 64$	$15 / 64$	$6 / 64$
Number of dark-skin alleles: 0	1	2	3	4	5	6

What is a pedigree?

- Pedigrees: graphic representation of family tree
- May be used if testcross cannot be made
- Pedigree key:
$-\square=$ male
$-\square=$ female
$-\square=$ marriage
- Children = connected to marriage by vertical life
$-\square$ = recessive male/female (bb)
- \square = heterozygous $1 / 2$ shaded, $1 / 2$ unshaded

\square male Ofemale + stillhirth

Make a little one using this fam...

