Chapter 8 Photosynthesis

@ 2011 Pearson Education, Inc

You need to know:

- The summary equation of photosynthesis, including the source and fate of the reactants and products.
- How leaf and chloroplast anatomy relate to photosynthesis.
- How photosystems convert solar energy to chemical energy.
- How linear electron flow in light reactions results in the formation of ATP, NADPH, and O_2 .
- How the formation of a proton gradient in light reactions is used to form ATP from ADP plus inorganic phosphate by ATP synthase.
- How the Calvin cycle uses energy molecules of the light reactions (ATP and NADPH) to produce carbohydrates (G3P) from CO₂.

Photosynthesis in Nature

Plants and other autotrophs are producers of biosphere
 <u>Photoautotrophs</u>: use light E to make organic molecules
 <u>Heterotrophs</u>: consume organic molecules from other organisms for E and carbon

Photoautotrophs

(b) Multicellular alga

(c) Unicellular protists

2011 Pearson Education, In

10 μm

(d) Cyanobacteria

40 μm

Photosynthesis: Converts light energy to chemical energy of food

<u>Chloroplasts</u>: sites of photosynthesis in

plants

Chloroplast

genomice digital lab

Sites of Photosynthesis

- <u>mesophyll</u>: chloroplasts mainly found in these cells of leaf
- <u>stomata</u>: pores in leaf (CO₂ enter/O₂ exits)
- <u>chlorophyll</u>: green pigment in thylakoid membranes of chloroplasts

Photosynthesis

 $6CO_2 + 6H_2O + Light Energy \rightarrow C_6H_{12}O_6 + 6O_2$

Redox Reaction: water is split $\rightarrow e^{-}$ transferred with H⁺ to CO₂ \rightarrow sugar

> *Remember: OILRIG* Oxidation: lose e⁻ Reduction: gain e⁻

Tracking atoms through photosynthesis

 Evidence that chloroplasts split water molecules enabled researchers to track atoms through photosynthesis (C.B. van Niel)

Photosynthesis = Light Reactions + Calvin Cycle "photo" "synthesis"

© 2011 Pearson Education, Inc

Light Reactions: Convert solar E to chemical E of ATP and NADPH

Nature of sunlight

- Light = Energy = electromagnetic radiation
- Shorter wavelength (λ): higher E
- Visible light detected by human eye
- Light: reflected, transmitted or absorbed

Electromagnetic Spectrum

Interaction of light with chloroplasts

© 2011 Pearson Education, Inc.

Photosynthetic pigments

- Pigments absorb different λ of light
- chlorophyll absorb violet-blue/red light, reflect green
 - chlorophyll a (blue-green): light reaction, converts solar to chemical E
 - chlorophyll b (yellow-green): conveys E to chlorophyll a
 - carotenoids (yellow, orange): photoprotection, broaden color spectrum for photosynthesis

Absorption Spectrum: determines effectiveness of different wavelengths for photosynthesis

Absorption of light by chloroplast pigments

(a) Absorption spectra

<u>Action Spectrum</u>: plots rate of photosynthesis vs. wavelength

(absorption of chlorophylls a, b<mark>,</mark> & carotenoids combined)

Engelmann: used bacteria to measure rate of photosynthesis in algae; established action spectrum

Which wavelengths of light are most effective in driving photosynthesis?

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Warm-Up

(Refer to notes / Campbell)

- What is the main function of the Light Reactions?
- 2. What are the reactants of the Light Reactions? What are the products?
- Where does the Light Reactions occur?
 What were the main pigments present in the leaves tested in class yesterday?

Light Reactions

Electrons in chlorophyll molecules are excited by absorption of light

(b) Fluorescence

<u>Photosystem</u>: reaction center & light-harvesting complexes (pigment + protein)

© 2011 Pearson Education, Inc.

Light Reactions

Two routes for electron flow: A. Linear (noncyclic) electron flow B. Cyclic electron flow

Light Reaction (Linear electron flow)

- 1. Chlorophyll excited by light absorption
- E passed to reaction center of Photosystem II (protein + chlorophyll a)
- 3. e⁻ captured by primary electron acceptor
 - Redox reaction $\rightarrow e^-$ transfer
 - e-prevented from losing E (drop to ground state)
- 4. <u>**H**</u>₂**O** is split to replace $e^- \rightarrow \underline{O}_2$ formed

- 5. e⁻ passed to <u>Photosystem I</u> via ETC
- 6. E transfer pumps H⁺ to thylakoid space
- 7. **ATP** produced by photophosphorylation
- e⁻ moves from PS I's primary electron acceptor to 2nd ETC
- 9. NADP⁺ reduced to NADPH

MAIN IDEA: Use solar E to generate <u>ATP</u> & <u>NADPH</u> to provide E for Calvin cycle

^{© 2011} Pearson Education, Inc.

^{© 2011} Pearson Education, Inc.

© 2011 Pearson Education, Inc.

© 2011 Pearson Education, Inc.

Mechanical analogy for the light reactions

<u>Cyclic Electron Flow</u>: uses PS I only; produces ATP for Calvin Cycle (no O₂ or NADPH produced)

Both respiration and photosynthesis use <u>chemiosmosis</u> to generate ATP

Proton motive force generated by:

- (1) H⁺ from water
- (2) H⁺ pumped across by cytochrome
- (3) Removal of H⁺ from stroma when NADP⁺ is reduced

© 2011 Pearson Education, Inc.

Warm-Up

- 1. Write a short synopsis of the light reaction.
- 2. What is its function? Where does it occur?
- 3. (See Fig. 10.5) What products of the Light Reaction are used for the Calvin Cycle?

Calvin Cycle

<u>Calvin Cycle</u>: Uses ATP and NADPH to convert CO₂ to sugar

 Uses ATP, NADPH, CO₂
 Produces 3-C sugar G3P (glyceraldehyde-3-phosphate)

Three phases:

- 1. Carbon fixation
- 2. Reduction
- 3. Regeneration of RuBP (CO_2 acceptor)

<u>Phase 1</u>: 3 CO₂ + **RuBP** (5-C sugar *ribulose bisphosphate*)

• Catalyzed by enzyme rubisco (*RuBP carboxylase*)

© 2011 Pearson Education, Inc.

Warm-Up

1. (See Figure 10.17) What are the 3 locations that H+ is used to create the proton gradient? 2. What purpose does cyclic e⁻ flow serve? What is the main function of the Calvin Cycle? Where does it occur? 4. What are the reactants of the Calvin cycle? What are the products? 5. Which enzyme is responsible for carbon fixation?

Alternative mechanisms of carbon fixation have evolved in hot, arid climates

Photorespiration

Metabolic pathway which:

- Uses O₂ & produces CO₂
- Uses ATP
- No sugar production (rubisco binds $O_2 \rightarrow$ breakdown of RuBP)
- Occurs on hot, dry bright days when stomata close (conserve H₂O)
- Why? Early atmosphere: low O_2 , high CO_2 ?

Evolutionary Adaptations

1. Problem with C₃ Plants:

- CO₂ fixed to 3-C compound in Calvin cycle
- Ex. Rice, wheat, soybeans
- <u>Hot, dry days</u>:
 - partially close stomata, $\downarrow CO_2$
 - Photorespiration
 - ↓ photosynthetic output (no sugars made)

2. C₄ Plants:

- CO₂ fixed to 4-C compound
- Ex. corn, sugarcane, grass
- <u>Hot, dry days</u> \rightarrow stomata close
 - 2 cell types = mesophyll & bundle
 sheath cells
 - <u>mesophyll</u> : PEP carboxylase fixes CO_2 (4-C), pump CO_2 to bundle sheath
 - bundle sheath: CO_2 used in Calvin cycle
- \downarrow photorespiration, \uparrow sugar production
- WHY? Advantage in hot, sunny areas

C₄ Leaf Anatomy

3. CAM Plants:

- Crassulacean acid metabolism (CAM)
- <u>NIGHT</u>: stomata open → CO₂ enters → converts to organic acid, stored in mesophyll cells
- <u>DAY</u>: stomata closed → light reactions supply ATP, NADPH; CO₂ released from organic acids for Calvin cycle
- Ex. cacti, pineapples, succulent (H₂Ostoring) plants
- **WHY?** Advantage in arid conditions

Warm-Up

- 1. Draw a T-Chart. Compare/contrast Light Reactions vs. Calvin Cycle.
- What is photorespiration? How does it affect C3 plants?
- In lab notebook: Graph data from yesterday's lab. Determine the ET50 for the "With CO2" test group.
- 4. In lab notebook: Brainstorm at list of possible factors that could affect the rate of photosynthesis. (Think of factors you could test with the leaf disk technique.)

© 2011 Pearson Education, Inc.

C ₃	C ₄	CAM
C fixation & Calvin together	C fixation & Calvin in different cells	C fixation & Calvin at different TIMES
Rubisco	PEP carboxylase	Organic acid

Importance of Photosynthesis

Plant:

Glucose for respirationCellulose

Global:

- O₂ Production
- Food source

Review of Photosynthesis

LIGHT REACTIONS

CALVIN CYCLE

MITOCHONDRIA

CHLOROPLAST

Comparison

RESPIRATION

Plants + Animals

- Needs O_2 and food
- Produces CO₂, H₂O and ATP, NADH
- Occurs in mitochondria membrane & matrix
- Oxidative phosphorylation
- Proton gradient across membrane

PHOTOSYNTHESIS

• Plants

- Needs CO_2 , H_2O , sunlight
- Produces glucose, O₂ and ATP, NADPH
- Occurs in chloroplast thylakoid membrane & stroma
- Photorespiration
- Proton gradient across membrane

© 2011 Pearson Education, Inc.

