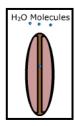

Part 1 - Construction of a Cell Membrane


http://www.wisc-online.com/objects/index tj.asp?objID=ap1101

Click through to page 5:

1. Identify the following **proteins** that make up the cell membrane.

		Draw one:	l
2.	Most of the cell membrane is made up of		l
	• -		l
			l
			l
			ĺ

The "tails" are _____ and therefore face inward and away from water.

The "heads" are _____ and face toward the watery surfaces.

- 3. What is the purpose of fibrous proteins?
- 4. Globular protein pores (called aquaporins) allow ______ to pass through, while other integral proteins selectively transport _____.
- 5. What are glycoproteins?
 Why are they said to be <u>peripheral</u>?

6. What is this molecule? _____ In what type of cells is it found? What is the function of this molecule?

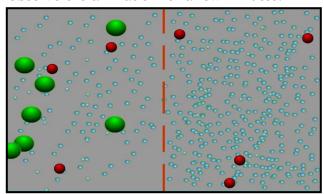
7. Construct a Cell Membrane by answering questions one through ten in the computer based activity.

Part 2 - Membranes & Transport

http://www.wiley.com/legacy/college/boyer/0470003790/animations/membrane transport/membrane transport.htm

1. Read the "Overview" of a cell membrane. Click on "Continue" to observe the animation. Draw a cell membrane and label all the parts as you step through the animation.

What are the two general characteristics of a molecule that will prevent it from passing through the membrane?


2. Click "Continue" again to observe "Osmosis and Diffusion".							
The net movement of molecules occurs from regions of	to	concentration.					
Osmosis Semi-permeable Membrane							
What is the "aim" of osmosis?							
Explain why the balloon on the left would get larger?							
3. Click on "Passive Transport". NOTE: Osmosis and diffusion are forms of passive transport. This animation describe transport called facilitated diffusion. Facilitated diffusion requires		cial case of passive _ called					
What type of molecule do you think glucose permease is?							
Sketch how glucose molecules can pass through a cell membrane.							
1. 2. 3.							
4. Continue on "Active Transport": a. In contrast to passive transporters, active transporters can move	e molecules fr	rom					
b. What form of chemical energy is consumed for active transport to take place?							
e. How many sodium ions are move out of the cell during each cycl	le?						
f. How many potassium ions are moved into the cell during each cy							

g. Does the cell become more positively charged or does the surrounding solution become more positively charged? Explain!
h. Where in animals is this "sodium-potassium pump" commonly found?
Part 3 - Solutions
http://www.chem4kids.com/files/matter_solution.html
1. What is a <u>solution</u> ?
2. Explain the difference between the <u>solute</u> and <u>solvent</u> .
Part 4 - Diffusion and Osmosis
Go to google to define the following terms:
1. Define all the terms:
• <u>Diffusion -</u>
• Osmosis -
• Passive Transport -
• Thermal (Brownian) Motion -
• Concentration -
• Concentration Gradient -
<pre>Part 5 - Passive Transport http://www.wisc-online.com/Objects/ViewObject.aspx?ID=AP1903</pre>
1. Molecules move randomly using
2. Net diffusion moves molecules the concentration gradient from areas of
tountil
is reached.
3. Describe the different results of raising or lowering the temperature. (Click on both at the same time.

Part 6 - Osmosis & Diffusion

http://zoology.okstate.edu/zoo lrc/biol1114/tutorials/Flash/Osmosis Animation.htm

Observe the animation for a few minutes.

- 1. What do the blue molecules represent?
- 2. What are the green and red molecules?
- 3. Which side is hypotonic? [left **OR** right]
- 4. In which direction will water move? [left OR right]
- 5. Towards which side are the red molecules moving? [left OR right] Why?
- 6. Are the green molecules crossing the membrane? Why OR Why not?

Part 9 - Phagocytosis

http://academic.brooklyn.cuny.edu/biology/bio4fv/page/phago.htm

Run the animation of phagocytosis.

1. Phagocytosis involv	ves bringing a large partic	cle into the cell. Rei	run the animati	on and describe the
	am to help with your exp			
2. Do you think this ac	ctivity would require ene	rgy?		
	lge of the cells and mitoc hagocytosis?			ule called that would be
4. What organelle do	you think digests the inco	oming particle?		
Part 10 -Quiz				
http://www.biology	/corner.com/quiz/qz di	iffusion.html		
Score:				

Extension- Study Guide:

http://www.biologycorner.com/worksheets/diffusion osmosis review.html

Complete the chapter review & study guide questions on a separate sheet of paper for B O N U S P O I N T S!